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Communication
Scattering Analysis of Modulated Corrugations in a Conducting Circular

Cylinder and Study of RCS Reduction
Sangsu Lee, Kyung-Young Jung , Hosung Choo , and Yong Bae Park

Abstract— In this communication, an electromagnetic boundary-value
problem of modulated transverse corrugations in an infinite conducting
circular cylinder is rigorously solved based on the Fourier transform,
eigenfunction expansion, and the mode matching method. Radar cross
section (RCS) of the modulated transverse corrugations is represented
in the series form. Computation is performed to analyze scattering
characteristics while varying depth, width, and period of the corrugations
and to investigate the excitation of surface waves and concomitant RCS
reduction.

Index Terms— Mode matching method, radar cross section (RCS),
surface waves, transverse corrugations.

I. INTRODUCTION

A corrugated surface has been extensively investigated due to its
wide applications in horn antennas, waveguide filters, and extra-
ordinary optical transmission [1]–[4]. It is also known that the
corrugated surface can be used to realize artificial soft or hard
surfaces [5], [6]. The enhanced optical transmission through slits
surrounded by periodic corrugations on the surface results from the
surface plasmon polariton (SPP) resonance [7]. In fact, SPP modes
are the special transverse magnetic surface wave modes propagating
along the interface between two media that have positive and negative
permittivities in the optical region. The SPP modes are evanescently
decaying in the perpendicular direction to the interface because they
are tightly bounded in the horizontal direction. Meanwhile, spoof SPP
modes can be sustained by a perfect electric conductor (PEC) even in
the micro/millimeter wave regimes when its surface is periodically
corrugated [8]–[10]. Since they are bound electromagnetic surface
waves that mimic the SPP modes in the optical region from the per-
spective of dispersion relation, the spoof SPP modes are also referred
to as SPP-like modes or designer SPPs [9], [10]. Some previous
studies have shown that the spoof SPP modes can be generated along
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the surface of the conducting circular cylinder with periodic trans-
verse corrugations [11]–[14]. The spoof SPP modes sustained over the
surface of the transversely corrugated conducting cylinder have been
mainly investigated for focusing and energy concentration. Analyses
of the transverse corrugations in the circular cylinder have also been
conducted for electromagnetic scattering in terms of the artificial
hard surface or the geometry of the corrugation [15]–[18]. However,
the previous studies assumed that the number of corrugations is
infinite, and therefore, Floquet’s theorem was used to represent the
electromagnetic field. Moreover, the corrugations are assumed to be
filled with dielectric material to satisfy the hard surface boundary con-
dition. Thus, research on electromagnetic scattering from the circular
cylinder with finite transverse corrugations may seem to be lacking.
Finite corrugations or slots in a hollow circular cylinder can be
rigorously analyzed based on the mode matching method, the Fourier
transform, and eigenfunction expansion [19], [20]. Therefore, it is
of great interest to rigorously solve the boundary-value problem for
a nonperiodic corrugation using the mode matching method and to
analyze electromagnetic scattering from the transversely corrugated
conducting circular cylinder in the viewpoint of the spoof SPP modes.
A previous study showed that the spoof SPP modes can be generated
at multiple frequencies by modulating the geometry of rectangular
grooves in a planar conductor based on in-depth simulations [21].
Thus, it is significantly meaningful to investigate the excitation of
the spoof SPP modes and the feasibility of reducing the reflection at
multiple spoof SPP resonance frequencies by modifying the geometry
of the corrugations.

In this communication, an electromagnetic boundary-value prob-
lem of the modulated transverse corrugations in an infinite conducting
circular cylinder is rigorously solved based on the mode matching
method. The Fourier transform and eigenfunction expansion are used
to represent the electromagnetic field in each region with respect to
discrete and continuous modes. The boundary conditions are enforced
to obtain a set of simultaneous equations for modal coefficients. Radar
cross section (RCS) is represented in the series form. Computation is
performed to analyze the excitation of surface waves and scattering
characteristics in terms of the corrugation geometries in detail. To val-
idate our formulation, the simulation results of Microwave Studio
(MWS) of CST are compared to ours. In addition, a relationship
between the excitation of the spoof SPP modes and the reduction of
reflection is discussed.

II. FIELD ANALYSIS

Let us assume that a linearly TM-polarized uniform plane wave
impinges on a conducting circular cylinder with narrow transverse
corrugations at φ = 180◦ and θ = 90◦ (normal incidence), as shown
in Fig. 1. A time convention e jωt is suppressed throughout the
analysis. The permittivity and permeability in regions (I) and (II) are
�1, μ1, �(i)2 , μ(i)2 . Superscript (i) indicates the i th corrugation from
the bottom (–z-axis). In region (I) (ρ > b), the total electromagnetic
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Fig. 1. Problem geometry.

field consists of incident, reflected, and scattered fields. In the
cylindrical coordinates, the incident and reflected waves have the form
of [22]
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where k1 = ω
√
μ1�1, Jn(·) is the Bessel function of the first kind of

order n, H (2)
n (·) is the Hankel function of the second kind of order n,

and the prime denotes partial derivative with respect to the entire
argument of both the Bessel and Hankel functions. The scattered
field generated by the corrugations in the circular cylinder can be
represented using the magnetic and electric vector potentials based
on the Fourier transform [23]
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k2
1 − ζ 2. In region (II) (a(i) < ρ < b, T (i) − w(i) <

z < T (i)+w(i)), the corrugations are assumed to be narrow for ease
in computation because of the subwavelength condition for sustaining
surface waves in general. Thus, the electromagnetic field within the
corrugations can be considered to be uniform in the z-direction;
the electromagnetic field does not vary with variable z [20]. This
assumption is valid if the corrugations are sufficiently small compared
to wavelength. In order to simplify the mode matching analysis
procedure, we apply the inner boundary condition (ρ = a(i)) when
defining vector potentials. The tangential electric fields, Eφ and Ez,
should be equal to 0 at ρ = a(i) , and then the magnetic and electric
vector potentials can be represented as a function of ρ and φ as
follows:
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2 , C(i)n and D(i)n are the discrete modal

coefficients of the i th corrugation, and Yn(·) is the Bessel function
of the second kind of order n. After the electromagnetic fields in all
regions are defined, the boundary conditions are enforced to obtain
a set of simultaneous equations for the modal coefficients at ρ = b.
First, applying the Fourier transform
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To calculate the integral form, we use the Gaussian quadrature
integration. With the set of the simultaneous equations (14) and (15),
the discrete modal coefficients C(i)n and D(i)n can be calculated.
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III. RCS CALCULATION

Three-dimensional RCS is defined as [22]

σ3-D = lim
r→∞ 4πr2

∣∣Er
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z

∣∣∣2 . (22)

We need to calculate the reflected field and the scattered field
for the evaluation of RCS. The reflected field is the scattered field
produced by the smooth circular cylinder in our formulation, and
therefore, the reflected field in the far-field region can be calculated by
using the equivalent surface current density. Therefore, the reflected
field in the far-field region, Er

z , can have the following form of [22]:
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where η1 = √
μ1/�1 is the wave impedance. In general, calculating

the integral form in (5) and (6) for the scattered field is not easy
and also time-consuming. In addition, for the far-field radiation
from slots on the circular cylinder, the surface equivalence theorem
is not able to give an exact solution due to the curvature of the
circular cylinder [22]. However, fortunately, the integral form could
be removed when dealing with the scattered field in the far-field
region. Specifically, in the far-field region, the circular cylinder can
be assumed to be an infinitesimal dipole source. Then, the far-
field electromagnetic field derived using different approaches in the
Fourier domain and the frequency domain should be equal, given
the uniqueness principle. Therefore, the integral form in (5) and (6)
can be removed, as described in [23]. Then, the scattered field, Es

z ,
produced by the transverse corrugations can have the form of
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z = − jω(sin θ)2

e− j k1r

πr
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z (−k1 cos θ)e jnφ. (24)

The numerator in (22) becomes equivalent to the sum of the above
reflected (23) and scattered (24) fields.

IV. NUMERICAL RESULTS

In order to investigate scattering characteristics of an infinite
conducting circular cylinder with transverse corrugations in detail,
we designed two models of the structure to excite surface waves
at a different frequency, i.e., an array of smaller corrugations with
a short period and that of larger corrugations with a long period.
The former has a period 20 mm, T (1) = −60 mm, a(i) = 26 mm,
b = 30 mm, 2w(i) = 1.4 mm, and L = 7. We will call it the first type.
The latter has a period 30 mm, T (1) = −75 mm, a(i) = 24 mm,
b = 30 mm, 2w(i) = 3.8 mm, and L = 6, which will be called
the second type. Before proceeding with numerical calculations, it is
pertinent to check the convergence behavior of modal coefficients.
Note that the modal orders to achieve sufficient convergence should
be those of the propagating modes plus a few evanescent modes.
Therefore, the truncation number of discrete modes for the azimuthal
direction used in our computations is N = 15 (n = 0, ±1, ±2,
. . ., ±15) to achieve convergence to within 0.01%, which is used
throughout numerical examples. Meanwhile, it is important to note
that the aforementioned design parameters are determined by the
design rules of rectangular grooves to have transmission through a slit
maximized [24]. The previous study made it clear that the optimum
conditions for the effective excitation of the spoof SPP modes are a
period p ≈ λ and a depth d ≈ (2n + 1)λ/4. The conditions were
obtained using in-depth simulations, calculations, and experiments
due to the difficulty in correlating the spoof SPP resonance frequency
and a theoretical formulation. Therefore, we initially designed the
first type and the second type according to the grooves’ optimum

Fig. 2. Monostatic RCS versus frequency (θ = 90◦, φ = 180◦).

Fig. 3. Ratio of the time-averaged Poynting vector toward z-direction near
the conductor surface to the total magnitude of the time-averaged Poynting
vector of the incident plane wave at 13 GHz.

conditions to figure out whether they can be applied to the circular
cylinder with the corrugations.

Moving on to the validation of our theoretical formulation, we plot-
ted monostatic RCS versus frequency at φ = 180◦ and θ = 90◦
in Fig. 2. The solid line denotes monostatic RCS of the smooth
circular cylinder (no corrugations). The dotted line indicates our
result of the first type, and circles stand for the simulation result
of MWS of CST. As is well known, RCS of an infinite circular
cylinder becomes nonfinite in general, and therefore, we assume that
the total length of the circular cylinder is 1 m. This value will be used
for all numerical examples unless otherwise specified. A comparison
of our computational result to the simulation result shows a good
agreement. The simulation was carried out based on the integral
equation solver, 20 cells per wavelength, and a PEC as a material.
The simulation time of MWS of CST is more than 30 min on a PC
(Dual Intel Xeon CPU E5-2620 v3 at 2.40 GHz, 128 GB memory).
For our formulation, the computation time is about 4 min on the
same PC, implying that our formulation is more time-efficient to
analyze electromagnetic behaviors of the proposed structure and to
optimize the geometry. In fact, it is well known that surface waves can
cause the reduction of reflection in both the optical and microwave
regions. By converting a fraction of the energy of the incident wave
into the surface energy, the reflected energy can be reduced in terms
of the energy conservation. From Fig. 2, it is interesting to note
that monostatic RCS is reduced the most at 13 GHz. Consequently,
the excitation of the spoof SPP modes gives rise to the reduction
of reflection in a certain direction (backscattering) and at a specific
frequency.

To verify the existence of the surface waves, or the spoof SPP
modes, Fig. 3 illustrates the ratio of the time-averaged Poynting
vector toward z-direction Sav-z(ρ,φ,z) near the interface (ρ = 31 mm,
φ = 180◦) to the total magnitude of the incident wave |Sav-in|.
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Fig. 4. Electric field amplitude in the case of the first type at 13 GHz
(φ = 180◦). Eρ , Eφ , Ez, and the total electric field from the top.

Fig. 5. Monostatic RCS versus frequency as depth is varied in the case of
the first type.

Circles denote the simulation result of MWS of CST and a com-
parison between the simulation result and our result shows a good
agreement. Compared to the normalized time-averaged Poynting
vector in the case of the circular cylinder without corrugations (see
the dotted line), the normalized time-averaged Poynting vector of the
first type is nonzero, even has a larger value. This demonstrates that
the significant amount of energy flows along the corrugated surface.
To further analyze the surface waves, we plotted the amplitude of Eρ ,
Eφ , Ez, and the total electric field on the ρz-plane at φ = 180◦ in the
case of the first type in Fig. 4. It is seen that the magnitude of the total
electric field is intense both inside and outside the corrugations. It can
be explained by the SPP theory. To be specific, the strong electric
field within the corrugations results from cavity resonances, and the
strong electric field above the corrugations is the spoof SPP modes
coupled to the periodic corrugations [7]. The magnitude of Eρ is
much stronger near the corrugations’ edge, which leads to increase
in the Poynting vector toward z-direction. The intense field within
the corrugations originates from mainly Ez; TM modes’ resonance
is dominant. The electric field distribution sufficiently supports the
excitation of the spoof SPP modes. Therefore, we can say that
the rectangular grooves’ optimum conditions can be applied to the
circular cylinder to sustain the spoof SPP modes.

It has been known that the spoof SPP modes can be generated
on the surface of the circular cylinder with transverse corruga-
tions [11]–[14]. However, it still seems to be lacking to study
parameters including width, depth, and period for efficiently exciting
the spoof SPP modes. Therefore, we conducted a parametric study to
investigate a relationship between the spoof SPP resonance frequency
and the parameters. First, the depth is varied, as shown in Fig. 5.

Fig. 6. Contour plot of monostatic RCS versus width and depth in the case
of the first type at 13 GHz.

Fig. 7. Monostatic RCS versus frequency (θ = 90◦, φ = 180◦).

Note that the resonance frequency decreases as the depth increases,
which coincides with the statement of the previous study [12].
In addition, Fig. 6 illustrates the contour plot of monostatic RCS
versus the width and the depth. The width affects the resonance
frequency as well, but its effect is minor. Once either the depth or the
width is determined, it is feasible to optimize the other parameter with
respect to monostatic RCS.

From now on, the increased period of the corrugations and the
concomitant change in the resonance frequency will be investigated
in detail by analyzing the second type. Fig. 7 illustrates monostatic
RCS versus frequency at θ = 90◦ and φ = 180◦, and the resonance
frequency is formed at 8 GHz, reducing reflection. Since the width
is almost equivalent to λ/10 and the simulation result and the
computed result are generally in good agreement, the assumption of a
narrow corrugation is still valid. Therefore, we can conclude that the
spoof SPP resonance frequency can be observed near the frequency
corresponding to the period of the corrugations under the rectangular
grooves’ optimum conditions. We also plotted the ratio of the time-
averaged Poynting vector toward z-direction Sav-z(ρ,φ,z) near the
interface (ρ = 31 mm, φ = 180◦) to the total magnitude of the
incident wave |Sav-in| in Fig. 8 to illustrate the excitation of surface
waves. Similar to the first type, considerable surface waves on the
surface of the second type are generated. Fig. 9 shows the amplitude
of Eρ , Eφ , Ez, and the total electric field on the ρz-plane at φ = 180◦
in the case of the second type. The magnitude of Eρ is mainly
focused on the corner of the corrugations and the cavity resonance is
due to Ez. We also plotted monostatic RCS versus frequency while
varying the depth and the contour plot of monostatic RCS versus the
width and the depth, as shown in Figs. 10 and 11, respectively. The
resonance frequency is lowering as the depth increases, and the depth
and the width can be optimized once one is determined. Therefore,
appropriate values of the parameters make possible the excitation of
the spoof SPP modes at a desired frequency.
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Fig. 8. Ratio of the time-averaged Poynting vector toward z-direction near
the conductor surface to the total magnitude of the time-averaged Poynting
vector of the incident plane wave at 8 GHz.

Fig. 9. Electric field amplitude in the case of the second type at 8 GHz
(φ = 180◦). Eρ , Eφ , Ez, and the total electric field from the top.

Fig. 10. Monostatic RCS versus frequency as depth is varied in the case of
the second type.

So far, scattering from two designed structures and the excitation
of the spoof SPP modes have been investigated. The electric field
distribution and the Poynting vector sufficiently demonstrate the
existence of the spoof SPP modes. For the rectangular grooves in
a planar conductor, a previous study revealed that the modulation
of a depth can sustain the spoof SPP modes at multiple frequencies
through in-depth simulations [21]. Thus, it is of significant interest to
check whether one can excite the spoof SPP modes along the circular
cylinder surface by modulating the transverse corrugations or not.
Toward this purpose, we combined the first type and the second type
into one structure and analyzed the structure in detail.

Fig. 11. Contour plot of monostatic RCS versus width and depth in the case
of the second type at 8 GHz.

Fig. 12. Monostatic RCS versus frequency (θ = 90◦ , φ = 180◦).

To compare the performance of the first type, the second type, and
the combined structure, we plotted monostatic RCS versus frequency
in Fig. 12. The solid line indicates monostatic RCS of the circular
cylinder without corrugations. The dashed line, the dotted line, and
the dashed and dotted line denote monostatic RCS of the combined
structure, the second type, and the first type, respectively. For all three
structures, the simulation results and our results agree well. For the
combined structure, it is seen that monostatic RCS is considerably
decreased at both 8 and 13 GHz, compared to other frequencies.
It is of interest that the combined structure shows two spoof SPP
resonance frequencies of the first type and the second type with little
to no deviation, whereas monostatic RCS value of the combined
structure is almost equal to that of the second type at 8 GHz,
discrepancy is observed at 13 GHz. As is shown in Figs. 5 and 10,
above the spoof SPP resonance frequency, ripples appear, and this
may be the reason for the discrepancy. As a result, it is feasible to
sustain the spoof SPP modes at multiple frequencies by combining
predesigned arrays of the corrugations.

V. CONCLUSION

The electromagnetic boundary-value problem of the modulated
transverse corrugations in an infinite conducting circular cylinder
is rigorously solved based on the Fourier transform, eigenfunction
expansion, and the mode matching method. RCS was calculated
in terms of the geometry of the corrugations and compared to the
full-wave simulation results to validate our formulation. Due to the
excitation of the spoof SPP modes, monostatic RCS can be reduced
at a desired frequency. Also, modulating the corrugations leads to
the excitation of the spoof SPP modes and the concomitant RCS
reduction at multiple frequencies. Our theoretical formulation is
useful to analyze and optimize the proposed structure and can be used
in research on the reduction of reflection and the stealth technology
as well.
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